docs.langflux.space
  • Welcome to LangFlux
  • Using LangFlux
    • API
    • Streaming
    • Embed
    • Variables
  • Configuration
    • Auth
      • Chatflow Level
    • Rate Limit
  • Integrations
    • Cache
      • InMemory Cache
    • Chains
      • Conversational Retrieval QA Chain
      • Vectara QA Chain
    • Document Loaders
      • S3 File Loader
      • PDF Files
    • Chat Models
      • Azure ChatOpenAI
      • ChatLocalAI
      • Google VertexAI
    • Embeddings
      • Azure OpenAI Embeddings
      • LocalAI Embeddings
    • Memory
      • Short Term Memory
      • Long Term Memory
        • Zep Memory
      • Threads
    • Text Splitters
      • Character Text Splitter
    • Tools
      • Custom Tool
    • Vector Stores
      • Chroma
      • Pinecone
      • Elastic
      • Qdrant
      • SingleStore
      • Supabase
      • Vectara
    • Utilities
      • Set/Get Variable
      • If Else
    • External Integrations
      • Zapier Zaps
  • Use Cases
    • Web Scrape QnA
    • Webhook Tool
Powered by GitBook
On this page

Was this helpful?

  1. Integrations

Embeddings

PreviousGoogle VertexAINextAzure OpenAI Embeddings

Last updated 1 year ago

Was this helpful?

An embedding is a vector (list) of floating point numbers. The distance between two vectors measures their relatedness. Small distances suggest high relatedness and large distances suggest low relatedness.

Embeddings can be used to create a numerical representation of textual data. This numerical representation is useful because it can be used to find similar documents.

They are commonly used for:

  • Search (where results are ranked by relevance to a query string)

  • Clustering (where text strings are grouped by similarity)

  • Recommendations (where items with related text strings are recommended)

  • Anomaly detection (where outliers with little relatedness are identified)

  • Diversity measurement (where similarity distributions are analyzed)

  • Classification (where text strings are classified by their most similar label)

Below are some of the embedding models available to use in LangFlux:

Azure OpenAI Embeddings
LocalAI Embeddings