docs.langflux.space
  • Welcome to LangFlux
  • Using LangFlux
    • API
    • Streaming
    • Embed
    • Variables
  • Configuration
    • Auth
      • Chatflow Level
    • Rate Limit
  • Integrations
    • Cache
      • InMemory Cache
    • Chains
      • Conversational Retrieval QA Chain
      • Vectara QA Chain
    • Document Loaders
      • S3 File Loader
      • PDF Files
    • Chat Models
      • Azure ChatOpenAI
      • ChatLocalAI
      • Google VertexAI
    • Embeddings
      • Azure OpenAI Embeddings
      • LocalAI Embeddings
    • Memory
      • Short Term Memory
      • Long Term Memory
        • Zep Memory
      • Threads
    • Text Splitters
      • Character Text Splitter
    • Tools
      • Custom Tool
    • Vector Stores
      • Chroma
      • Pinecone
      • Elastic
      • Qdrant
      • SingleStore
      • Supabase
      • Vectara
    • Utilities
      • Set/Get Variable
      • If Else
    • External Integrations
      • Zapier Zaps
  • Use Cases
    • Web Scrape QnA
    • Webhook Tool
Powered by GitBook
On this page
  • Quickstart Tutorial
  • Prerequisite
  • Setup
  • Filters
  • Prerequesites:
  • Setup
  • Resources

Was this helpful?

  1. Integrations
  2. Vector Stores

Vectara

PreviousSupabaseNextUtilities

Last updated 1 year ago

Was this helpful?

Quickstart Tutorial

Prerequisite

  1. Click Create Corpus

  1. Input required fields:

  • Name: name of the corpus to be created

  1. Click Create and wait for the corpus to finish setting up

Setup

  1. Click on the "Authorization" tab in the corpus view

  1. Click on the "Create API Key" button, choose a name for the API key and pick the QueryService & IndexService option

  1. Click Create to create the API key

  2. Get your Corpus ID, API Key, and Customer ID

  1. Back to LangFlux canvas, drag and drop Vectara nodes. Click Create New from the Credentials dropdown:

  1. Copy & Paste each details (Corpus ID, Customer ID, API Key) into below:

Filters

Prerequesites:

  1. Ensure that a Vectara corpus with filters is already created.

  2. Upload documents with metadata to that corpus.

  3. Ensure that a Vectara component is created in LangFlux.

Setup

To add filters, click on "Additional Parameters," and then input your filter string in the metadata filter field.

Resources

Register an account for

Now you can connect any Document node under category to Vectara

For more details on how to use Vectara filters, please refer to the .

Vectara
Document Loader
🎉
official documentation
LangChain JS Vectara Blog Post
5 Reasons to Use Vectara's Langchain Integration Blog Post
Vectara Boomerang embedding model Blog Post