You can use the chatflow as API and connect to frontend applications.
You also have the flexibility to override input configuration with overrideConfig property.
import requests
API_URL = "http://localhost:3000/api/v1/prediction/<chatlfowid>"
def query(payload):
response = requests.post(API_URL, json=payload)
return response.json()
output = query({
"question": "Hey, how are you?",
"overrideConfig": {
"returnSourceDocuments": true
},
"history": [
{
"message": "Hello, how can I assist you?",
"type": "apiMessage"
},
{
"type": "userMessage",
"message": "Hello I am Bob"
},
{
"type": "apiMessage",
"message": "Hello Bob! how can I assist you?"
}
]
})
async function query(data) {
const response = await fetch(
"http://localhost:3000/api/v1/prediction/<chatlfowid>",
{
method: "POST",
headers: {
"Content-Type": "application/json"
},
body: JSON.stringify(data)
}
);
const result = await response.json();
return result;
}
query({
"question": "Hey, how are you?",
"overrideConfig": {
"returnSourceDocuments": true
},
"history": [
{
"message": "Hello, how can I assist you?",
"type": "apiMessage"
},
{
"type": "userMessage",
"message": "Hello I am Bob"
},
{
"type": "apiMessage",
"message": "Hello Bob! how can I assist you?"
}
]
}).then((response) => {
console.log(response);
});
Vector Upsert API
POST /api/v1/vector/upsert/{your-chatflowid}
Request Body
Key
Description
Type
Required
overrideConfig
Override existing flow configuration
object
No
stopNodeId
Node ID of the vector store. When you have multiple vector stores in a flow, you might not want to upsert all of them. Specifying stopNodeId will ensure only that specific vector store node is upserted.
array
No
Document Loaders with Upload
Some document loaders in Flowise allow user to upload files:
If the flow contains Document Loaders with Upload File functionality, the API looks slightly different. Instead of passing body as JSON, form-data is being used. This allows you to upload any files to the API.
It is user's responsibility to make sure the file type is compatible with the expected file type from document loader. For example, if a Text File Loader is being used, you should only upload file with .txt extension.
import requests
API_URL = "http://localhost:3000/api/v1/vector/upsert/<chatlfowid>"
# use form data to upload files
form_data = {
"files": ('state_of_the_union.txt', open('state_of_the_union.txt', 'rb'))
}
body_data = {
"returnSourceDocuments": True
}
def query(form_data):
response = requests.post(API_URL, files=form_data, data=body_data)
print(response)
return response.json()
output = query(form_data)
print(output)
// use FormData to upload files
let formData = new FormData();
formData.append("files", input.files[0]);
formData.append("returnSourceDocuments", true);
async function query(formData) {
const response = await fetch(
"http://localhost:3000/api/v1/vector/upsert/<chatlfowid>",
{
method: "POST",
body: formData
}
);
const result = await response.json();
return result;
}
query(formData).then((response) => {
console.log(response);
});
Document Loaders without Upload
For other Document Loaders nodes without Upload File functionality, the API body is in JSON format similar to Prediction API.